

PHOTOMATE Scandinavia

Faisal Baryalai

Solutions Manager-Nordic Digital power

HUAWEI FUSIONSOLAR PARTNER for CEE, Scandinavia, Baltics and Eurasia

MARKETING ROADSHOWS PARTNER EVENTS

OVER 15 EU DESTINATIONS IN 2023, REALIZED 150 EVENTS

WITH PARTICIPATION OF OVER 3000 INSTALLERS

- 4 ROADSHOW TRUCKS, ALL DAY PROGRAM AND TRAININGS
- PARTNER DAYS IN MANY DESTINATIONS SWE, LIT, HUN, ROM, BUL, EURASIA WITH PARTICIPATION OF OVER 1700 PARTNERS
- EU BIGGEST EXHIBITION INTERSOLAR 2023, 224 m2 STAND

CONTENTS

- Huawei Digital Power-Product portfolio
- Intelligent Management System
- Ancilliary Services
- Installer certificates and registration

HUAWEI provides all scenarios PV + BESS solution

Smart PV+storage generator

Smart String ESS

Green business power

Green home power

Smart microgrid

All-Scenario Smart PV + BESS Solution

Better LCOE and LCOS, grid forming, active safety

Huawei: A trusted long-term partner

Vision & mission

Bring digital to every person, home and organization for a fully connected, intelligent world 170+

countries and regions

207,000

employees

55.4%

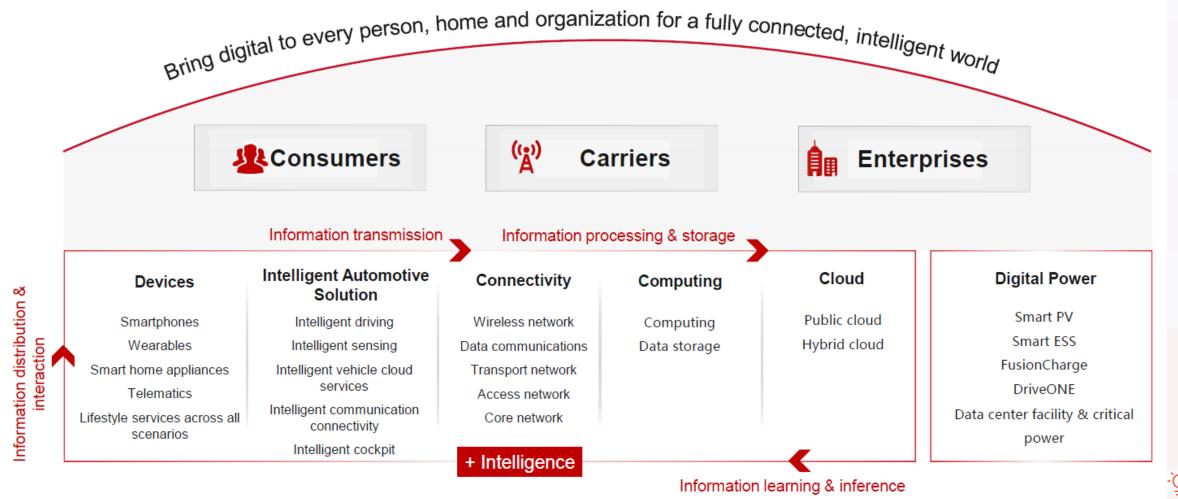
of employees work in R&D

No. 4

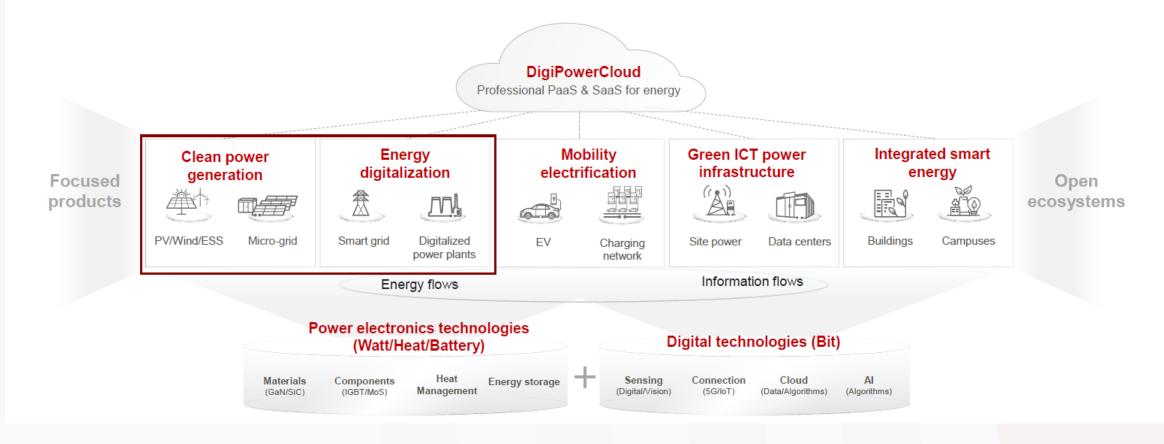
in global R&D investment

120,000+

active patents held globally


(*Huawei has one of the world's largest patent portfolios.)

Focusing on ICT to provide products, solutions, and services to three customer groups



Huawei Digital Power: Integrating Digital and Power Electronics Technologies, Developing Clean Power, and Enabling Energy Digitalization to Drive Energy Transition for a Better, Greener Future

Evolving from high carbon to low carbon, and finally to net-zero carbon

FusionSolar Continuously Building a Greener and Better Future Together with Our Global Customers

300+ GW
Inverter Shipment

Exx 398MW

PV Plant in Chile

Accumulated

90.7GW

Inverter Shipment 2022 **30GW**

STS Shipment

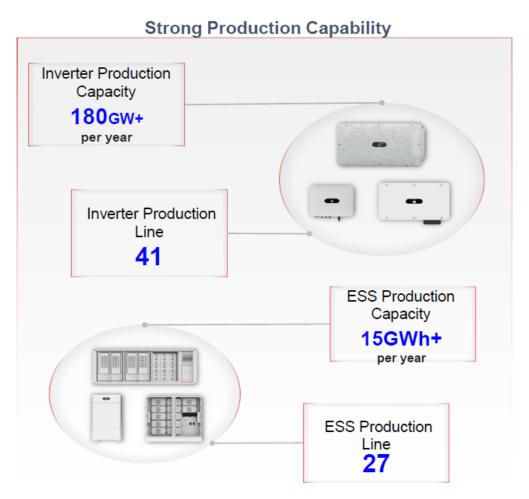
6.8GWh

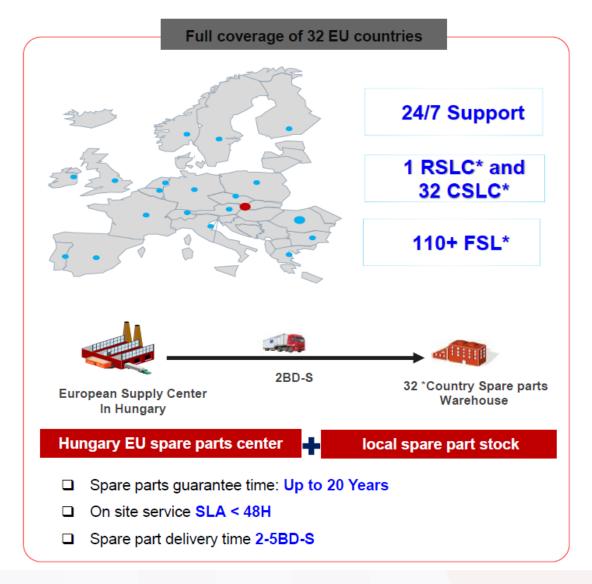
ESS Shipment 2022

230 Million tons
Carbon Emissions Reduced

313 Million
Equivalent Trees Planted

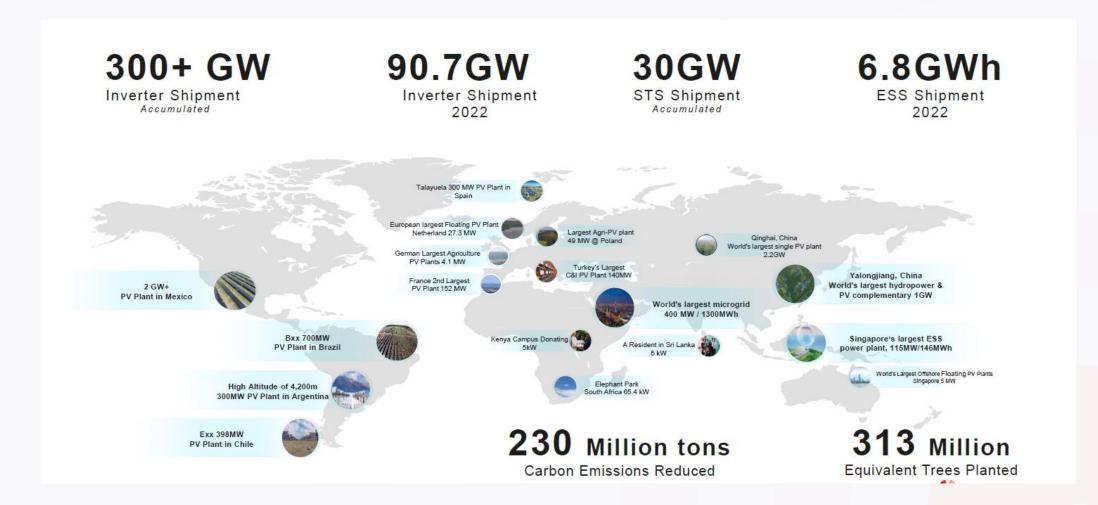
Global R&D teams and technology platforms: Leveraging the domain specific advantages globally to keep leading





Production and Supply: Huawei Strong Production Capability and Global Supply

Supply


Chain Network

Huawei's Solar Inverter Business Has Ranked No.1 in

Market Share for Eight Consecutive Years

C&I PV CAGR in 2022

C&I PV Global in 2022

enterprise customers 100,000+

C&I PV Carbon 2022

emissions reduction in 29 million tons

Residential On-grid PV+ESS Solution Overview

Shine on Energy-using Prospect

Shine on Full Journey Convenience

Shine on Active Safety

SUN2000-12/15/20/25K-MB0

HUAWEI Enterprise Partner Service

The Most Powerful & Future-ready Inverters in Residential

Smart Energy Controller

SUN2000-3/4/5/6/8/10KTL-M1 High Current

Battery compatible (S0)

New

Three-phase SUN2000-12/15/17/20/25K-MB0

Battery compatible (S0, S1)

Three-phase SUN2000-12/15/17/20/25K-M5 PV Only

Higher Power

6 kW 10 kW Single-phase

10 kW 25 kW
Three-phase

Triple reliability to ensure a 25-year service life with an annual failure rate < 0.5%

Huawei Smart PV Solution Manufacture 4K views - 7 years ago

Huawei FusionSolar

Based on the principles of simplification, full digitalization and global automated operation and maintenance,

https://www.youtube.com/watch?v=A0EPuO2XvHg &t=146s

Reliable design Avoid product quality defects

"Reliability"

Reliable production Automation production Ensure the product supply

Reliable tests Global Certification Center Strict tests ensure user benefits

Reliability test Unique rocket triggered lightning test

200 inverters, running for 963 days

4,939 inverters, running for 583 days

Yearly failure rate: Yearly failure rate:

Yearly failure rate: 0.189%

0.252%

0.390%

1790 inverters, running for 207 days

Phase IV

Huawei Smart String ESS LUNA2000-7/14/21-S1

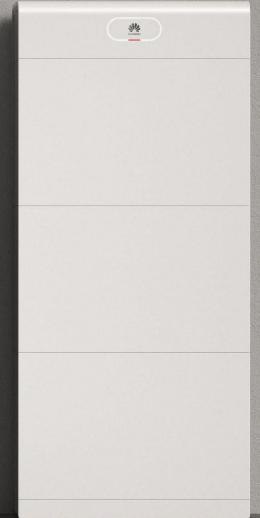
Module+ architecture, leading in all aspects

Higher Longer Wider Safer **Higher throughput**

Longer lifespan

Wider operating temperature range

Rigorous safety protection



Simplistic and borderless design, easy to blend into surroundings

Define the Flagship Residential Energy Storage System

New Available 2024 Q1 LUNA2000-7/14/21-S1

LUNA2000-5/10/15-S0

Above two generations of ESS will coexist in the market

Revolutionized Architecture

- Industry's 1st Module+ Architecture:
- Industry's 1st 280Ah Battery Cell in Residential ESS
 Recycle times ≥ 12,000 (25°C, 60% EOL)

Ancillary services integration:

- 3rd party EMS needed
- Response time of dongle-inverterbattery output: (S0 and S1)
 - Trial version available end-of Sept
 - Official release end-of Dec

Higher capacity

5 kWh/30 kWh

7 kWh/84 kWh

Ultra-long service life

10 years

15 years

Huge rise in Charge/discharge power

3.5kW/7kW/10.5kW

Compared with Huawei's previous-generation residential ESS LUNA2000-5/10/15-S0 (data source Huawei's internal lab)

Industry's 1st

IP66 residential ESS

LUNA S1 Vendor B Vendor P Vendor S

Ingress Protection Rating

IP66

IP5

IP55

IP55

Easily cope with rain and water splashes.

Industry's only
water immersion protection
residential ESS

40cm

72h

Safe in case of waterlogging, ice, and snow coverage

5-layer enhanced safety, safeguarding every family, every day

Cell-level protection

- LFP cells from top suppliers
- Subjected to rigorous tests, such as cycle tests (up to 1/8 of cycle life) and puncture tests

Electrical protection


- Multiple protection measures, such as overcharge, overvoltage, overcurrent, and over temperature
- External short circuit protection

Structural protection

- Industry's 1st IP66 protection, industry's 1st 40 cm water immersion protection
- High-strength chassis, 5T heavy pressure resistance, 20% hydrogen explosion test

Active protection

- Real-time cell-level temperature and voltage detection
- Intelligent ports detection
- SOH calibration for full-lifecycle health protection

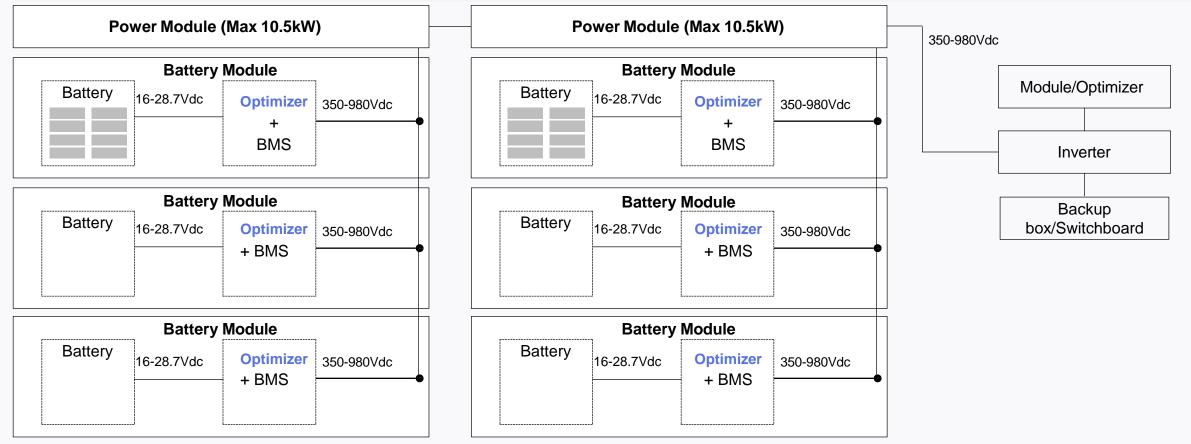
Emergency protection

- Industry-only emergency fire suppression module
- World-leading active pressure release technology

Passed safety certification tests, such as VDE 2510-50, IEC 62169, ISO 13849, IEC 63056, IEC 62040-1, IEC 62477 and UN 38.3.

Innovative Architecture, More Usable Energy

Module+ architecture, built-in energy optimizer, packlevel independent optimization


Module+

DC coupled and connected in parallel.

Each battery pack has a built-in optimizer

- Pack-level independent optimization and management
- Each battery pack only needs 8pcs of cells to independently achieve the system operating voltage 350V~980V

The PV & ESS solution is upgraded to cover more scenarios

Inverters Support ESS Capacity Expansion

A single inverter supports:

Max 30 kWh

LUNA2000-7/14/21-S1

L1, LC0, and M1 inverters:

(20.7 kWh x 2)

MB0 inverter: Max 82.8 kWh (20.7 kWh x 4)

LUNA2000-7/14/21-S1

Plant-Level ESS Capacity Expansion (A Maximum of 3 Inverters Can Be Connected in Parallel)

Smart Dongle networking

LUNA2000-5/10/15-S0

Max 90 kWh

EMMA networking

Max 180 kWh

Smart Dongle networking

Max 124.2 kWh (20.7 kWh x 6)

EMMA networking

Max 248.4 kWh (20.7 kWh x 12)

The support for parallel connection of four S1 ESSs is to be determined.

Increased Charge and Discharge Power

Max 5 kW \implies Max 10.5 kW

Max 20 kW \implies Max 25 kW

Max 60 kW

Single-rack ESS

Single inverter

Entire system

Note: 1. The residential LUNA S0 and residential LUNA S1 cannot be installed in the same plant.

2. In the Dongle networking scenario, when MBO services as the primary inverter and needs to be connected to both meter and ESS, the meter has requirements when more than two ESS are connected. For details, pls. check the MB0 user manual.

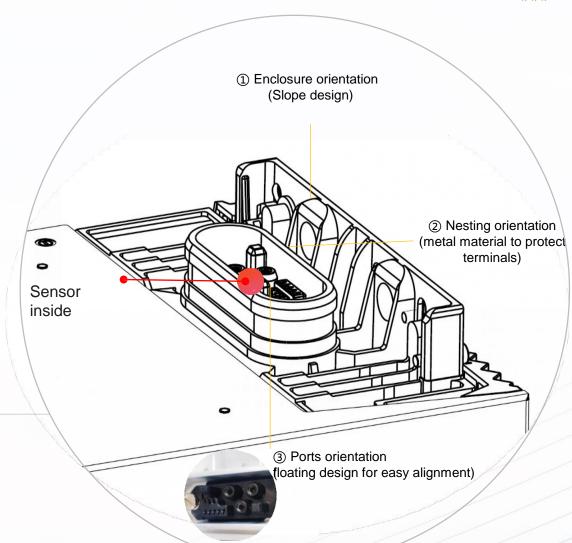
38 Residential Smart PV Solution

Ultimate Experience for Installers & Users

Cable-free connection, saving installation time by 50%+

Time-saving: No communications cable or power cable

Between power packs and battery packs
Between battery packs


Labor-saving: Convenient docking

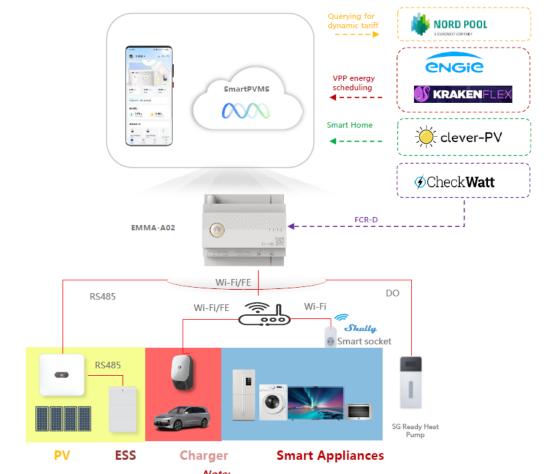
3-layer orientation design for easy docking

Free from worry: Intelligent ports detection

Sensor inside, identifies faults through temperature detection intelligently

New Smart Management
System Assistant

EMMA A-02



EMMA: A Smart, Open, New Generation Home Energy Management Assistant

Smart Energy Management

- One-stop management of inverters, ESS, optimizers, chargers and appliances. Device status, power usage, consumption statistics, and realtime App monitoring.
- Home appliances can be flexibly controlled through Shelly sockets, supporting power usage priority sorting and scheduled power usage.
- Supports access to SG Ready standard heat pumps.
- Peak shaving, PV preference, and power limitation at the grid connection point (within 2 seconds).
- Automatic startup and shutdown of Diesel Generator (D.G.).

New

Smart Scheduling

- Automatically connect to NordPool power market and obtain dynamic tariff in real time.
- Using big data and machine learning, the system integrates
 electricity prices, weather, and load for optimized solar and ESS
 scheduling. This approach enhances price arbitrage, allows for zeropower grid connection during negative prices, and boosts average
 revenue by 5% to 10% in dynamic pricing scenarios

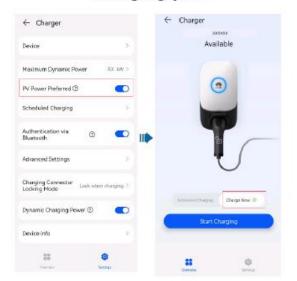
New

Capability enhancement

Open to 3rd parties

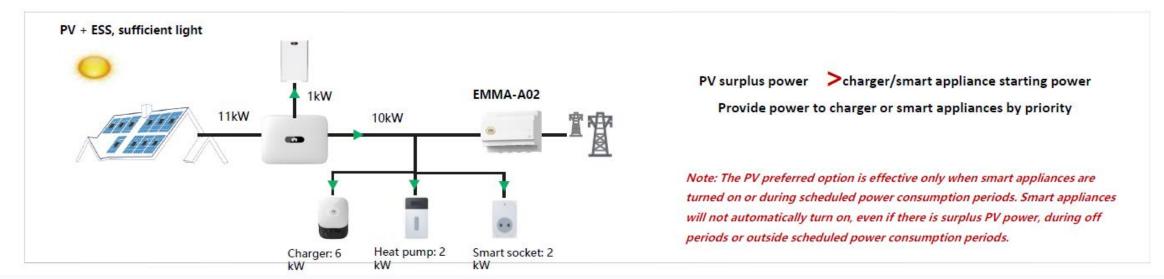
- The controller supports the Modbus-TCP standard protocol, integrates with 3rd VPPs, enables FCR-D frequency modulation, and responds to control instructions within 2.5 seconds.
- New
- SmartPVMS offers open REST APIs, enabling integration and management with 3rd party smart home systems and virtual power plants (VPPs).

A Home that Always Shines


1. The EMMA solution comprises the EMMA-A02 controller and the

- Residential Smart PV Solution FusionSolar SmartPVMS.
 - 2. We highly recommend upgrading the EMMA-A02 controller to the V100R024C00SPC100 version.

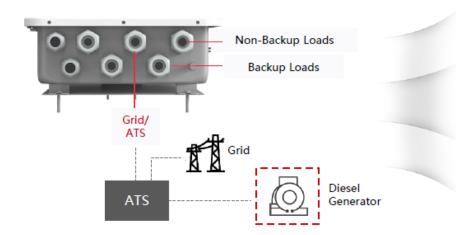
PV Preferred: Adaptive charging and the usage of PV power improves the self-consumption rate

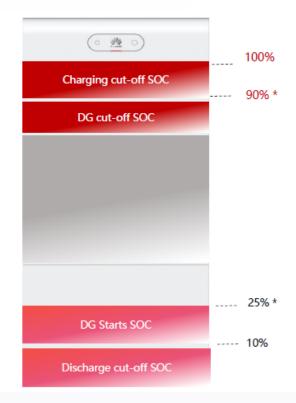


Charging pile

PV electricity usage priority


Working Logic of Whole Home Backup Solution With D.G.



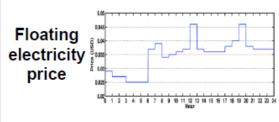


Off-grid Power Priority: PV > ESS > D.G.

Note: 1-ATS is needed for backup with DG 2-Only MAP0 inverter supports DG

Off-grid backup + D.G. working logic:

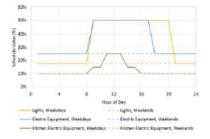
- When grid is off, ESS discharges to loads.
- Until ESS SOC<25%, DG starts working.
- When DG starts working, DG charges to ESS and loads at same moment.
- ④ Until ESS SOC>90%, DG stops working and ESS supplies power to loads.

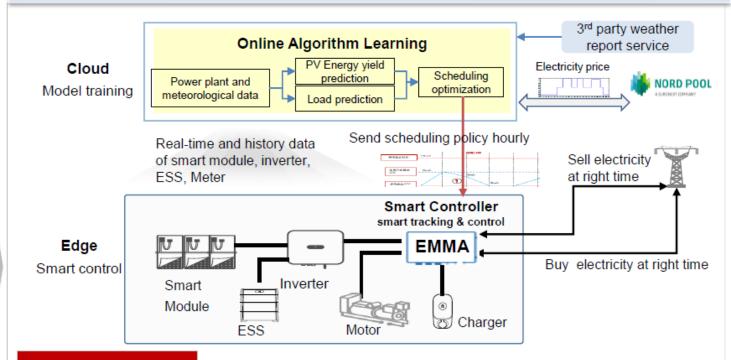

SmartGuard-63A-(T0, AUT0)User Manual

Smart Scheduling: Utilize the Big Data and Algorithm for Optimum Revenue of PV& ESSAWEI

Challenge: Fixed scheduling cannot maximize benefits.

Currently, the fixed ESS scheduling policies (Maximum self-consumption and TOU) cannot handle the real-time changes.


Electricity price varies greatly with external factors such as fuel price, season and market.


The PV energy yield is uncertain due to weather factors, and the fixed scheduling policy cannot change every day

Variable load

The load curve varies greatly between weekdays and weekends, and fixed scheduling is difficult to cope with

Smart EMS: Cloud-Edge collaboration, PV+ESS convergence, scheduling policy optimized hourly

Solution Advantage

- Higher revenue: The revenue in dynamic electricity price scenarios increases by 5%~10% on average.
- Higher accuracy of optical power prediction: the average prediction accuracy in the next 24H can reach 93% which is 1% higher than the industry.
- Higher accuracy of load prediction: the average prediction accuracy in the next 24H can reach 90% which is 2% higher than the industry.
- Leading architecture: Cloud-Edge collaboration continuously improves the scheduling algorithm
 precision.

The Relationship between EMMA's Smart Energy Management and Smart Scheduling HUAWEI

	Smart Energy Managemer	Source College Health and	
Features	Parameters	Description	Smart Scheduling
Power limit for grid feed-in	Max active power (kW)	Set an upper limit on the feed-in grid power.	The EMMA smart scheduling algorithm takes into account the power limits and ensures compliance. For example, in scenarios with a zero-power grid feed-in limit, the system can achieve zero
Peak Shaving	Peak Shaving Power limit	Set an upper limit on the purchased power.	power feed-in (anti-backflow) within 2 seconds. The EMMA smart scheduling algorithm adheres to Peak Shaving power purchase limits. The 24A TR6 version only supports fixed Peak Shaving and does not support time-based Peak Shaving. During time-based Peak Shaving, the scheduling algorithm follows the minimum power limits. The controller will regulate battery discharge to minimize power purchases as much as possible, but if the load demand is too high, it may still exceed the Peak Shaving threshold.
	Peak Shaving Backup SOC	Manage and monitor backup battery levels to ensure sufficient charge for peak demand periods and emergencies, achieving peak shaving.	The EMMA smart scheduling algorithm will adhere to the SOC limit.
Battery charge and discharge control	Battery charge and discharge cut-off SOC	State of Charge (SOC) cut-off for battery charging and discharging	The EMMA smart scheduling algorithm will adhere to the SOC limit.
Scheduled Electricity Usage	Scheduling electricity usage in terms of time and amount	Scheduling electricity usage at specified times for chargers and smart appliances connected via Shelly sockets.	The EMMA smart scheduling algorithm is compatible with scheduled electricity usage.
PV Preferred	PV preferred option	Chargers and smart appliances connected through Shelly sockets prioritize using power from PV or ESS.	The EMMA smart scheduling algorithm might alter the priority between the energy storage system (ESS) and smart appliances
Manage the diesel generator (D.G.)	D.G. start/cut-off SOC	Automatic start and stop	The EMMA smart scheduling does not affect the start-stop control of the diesel generator in off-grid scenarios.

The Relationship between EMMA's Smart Energy Management and Smart Scheduling WHUAWEI

	Smart Energy Manageme		
Features	Parameters	Description	Smart Scheduling
Power limit for grid feed-in	Max active power (kW)	Set an upper limit on the feed-in grid power.	The EMMA smart scheduling algorithm takes into account the
			power limits and ensures compliance. For example, in scenarios
			with a zero-power grid feed-in limit, the system can achieve zero
1 over milit for grid feed in			power feed-in (anti-backflow) within 2 seconds.
		Set an upper limit on the purchased power.	The EMMA smart scheduling algorithm adheres to Peak Shaving
			power purchase limits. The 24A TR6 version only supports fixed
			Peak Shaving and does not support time-based Peak Shaving.
Peak Shaving	Peak Shaving Power limit		During time-based Peak Shaving, the scheduling algorithm
			follows the minimum power limits.
			The controller will regulate battery discharge to minimize power
			purchases as much as possible, but if the load demand is too
			high, it may still exceed the Peak Shaving threshold.
	Peak Shaving Backup SOC	Manage and monitor backup battery levels to ensure	The EMMA smart scheduling algorithm will adhere to the SOC
		sufficient charge for peak demand periods and	limit.
		emergencies, achieving peak shaving.	The EMMA smart scheduling algorithm will adhere to the SOC
Battery charge and discharge control	Battery charge and discharge cut-off SOC	State of Charge (SOC) cut-off for battery charging and discharging	limit.
Scheduled Electricity Usage	Scheduling electricity usage in terms of	Scheduling electricity usage at specified times for chargers	The EMMA smart scheduling algorithm is compatible with
	time and amount	and smart appliances connected via Shelly sockets.	scheduled electricity usage.
PV Preferred	PV preferred option	Chargers and smart appliances connected through Shelly	The EMMA smart scheduling algorithm might alter the priority
		sockets prioritize using power from PV or ESS.	between the energy storage system (ESS) and smart appliances
Manage the diesel generator (D.G.)	D.G. start/cut-off SOC	Automatic start and stop	The EMMA smart scheduling does not affect the start-stop
			control of the diesel generator in off-grid scenarios.

A Home that Always Shines

The Relationship between EMMA's Smart Energy Management and Smart Scheduling WHUAWEI

	Smart Energy Manageme	Count Calcada Para	
Features	Parameters	Description	Smart Scheduling
Power limit for grid feed-in	Max active power (kW)	Set an upper limit on the feed-in grid power.	The EMMA smart scheduling algorithm takes into account the
			power limits and ensures compliance. For example, in scenarios with a zero-power grid feed-in limit, the system can achieve zero
			power feed-in (anti-backflow) within 2 seconds.
	Peak Shaving Power limit	Set an upper limit on the purchased power.	The EMMA smart scheduling algorithm adheres to Peak Shaving
			power purchase limits. The 24A TR6 version only supports fixed Peak Shaving and does not support time-based Peak Shaving.
			During time-based Peak Shaving, the scheduling algorithm
			follows the minimum power limits.
Peak Shaving			The controller will regulate battery discharge to minimize power
			purchases as much as possible, but if the load demand is too
			high, it may still exceed the Peak Shaving threshold.
	Peak Shaving Backup SOC	Manage and monitor backup battery levels to ensure	The EMMA smart scheduling algorithm will adhere to the SOC
		sufficient charge for peak demand periods and emergencies, achieving peak shaving.	limit.
Detter also and disabeles and a	Battery charge and discharge cut-off SOC	State of Charge (SOC) cut-off for battery charging and discharging	The EMMA smart scheduling algorithm will adhere to the SOC
Battery charge and discharge control			limit.
Scheduled Electricity Usage	Scheduling electricity usage in terms of	Scheduling electricity usage at specified times for chargers	The EMMA smart scheduling algorithm is compatible with
	time and amount	and smart appliances connected via Shelly sockets.	scheduled electricity usage.
PV Preferred	PV preferred option	Chargers and smart appliances connected through Shelly sockets prioritize using power from PV or ESS.	The EMMA smart scheduling algorithm might alter the priority
			between the energy storage system (ESS) and smart appliances
Manage the diesel generator (D.G.)	D.G. start/cut-off SOC	Automatic start and stop	The EMMA smart scheduling does not affect the start-stop
			control of the diesel generator in off-grid scenarios.

What can EMMA be compared to?

SmartDongle, Power Meter, EMS for load control

Third party EMS
System

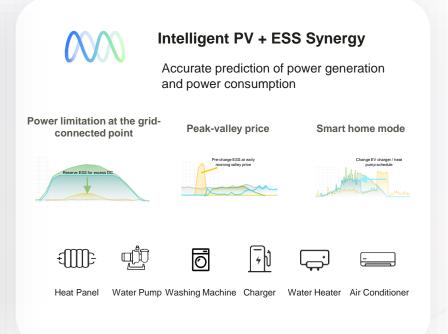
EMMAAll in one device

Integrates the Smart Dongle, electric meter, and home energy management system

Intelligent Synergy, Revenue Increased by EMMA

EMMA

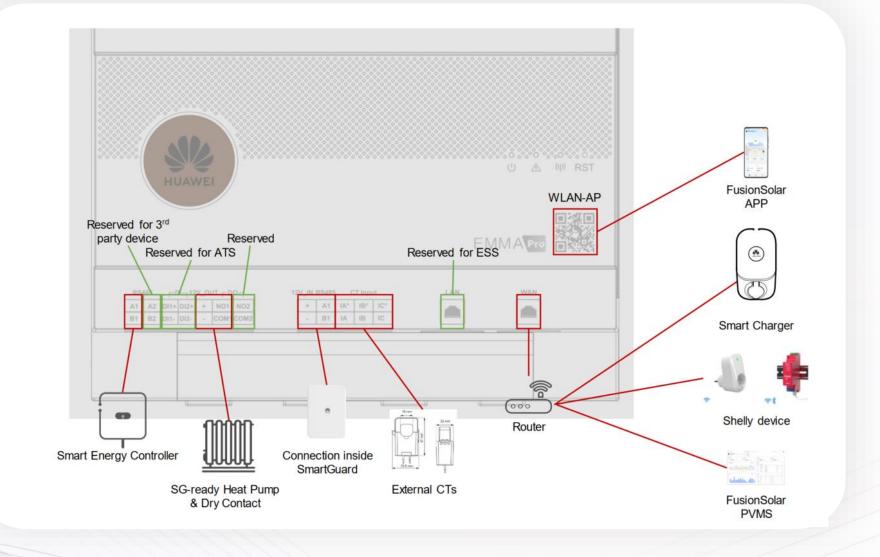
Energy Management Assistant

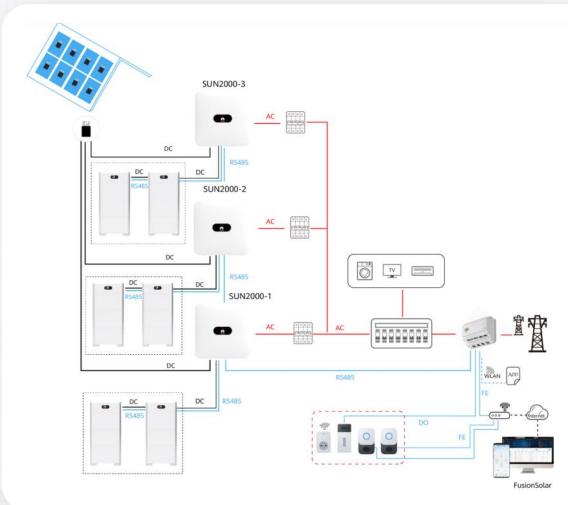


EMMA-A02

Integrates the Smart Dongle, electric meter, and home energy management.

Unified management for PV, ESS, charger, and appliances SG-ready heat pump intelligent control More appliances controlled via smart circuit breakers or sockets





Single-Phase PV+ESS Scenario + EMMA Networking

Product Overview

Components:

Inverter (supports up to three devices):

- SUN2000-8K-LC0
- SUN2000-10K-LC0
- SUN2000-(2KTL-6KTL)-L1

Energy storage system (ESS)

- LUNA2000-(5-30)-S0
- LUNA2000-7/14/21-S1 (in near future)

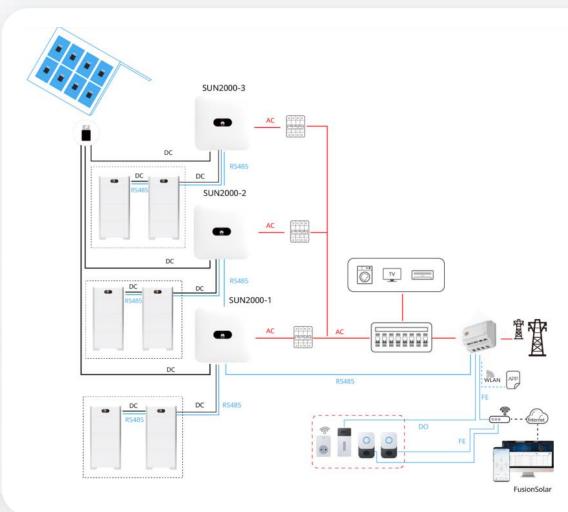
EMMA

- EMMA-A01:Only PV and ESS features are supported
- EMMA-A02: Features of PV, ESSs, smart chargers, and smart loads are supported.

Smart PV Optimizer

- SUN2000-450W-P
- SUN2000-450W-P2
- SUN2000-600W-P

Smart Charger


Smart Appliance Networking - More details on a separate slide

Three-Phase PV+ESS Scenario + EMMA Networking

Product Overview

Components:

Inverter (supports up to three devices):

- SUN2000-(12KTL-25KTL)-MB0
- SUN2000-(3KTL-12KTL)-M1
- SUN2000-(8KTL-20KTL)-M2
- SUN2000-(12KL-25KL)-M5

Energy storage system (ESS)

- LUNA2000-(5-30)-S0
- LUNA2000-7/14/21-S1 (in near future)

EMMA

- EMMA-A01:Only PV and ESS features are supported
- EMMA-A02: Features of PV, ESSs, smart chargers, and smart loads are supported.

Smart PV Optimizer

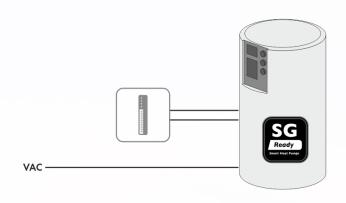
- SUN2000-450W-P
- SUN2000-450W-P2
- SUN2000-600W-P

Smart Charger

Smart Appliance Networking - More details on a separate slide

Smart Appliance Networking with EMMA-A02

Smart Charger


SCharger-7KS-SO (single-phase)
SCharger-22KT-SO (three-phase)
up to two devices

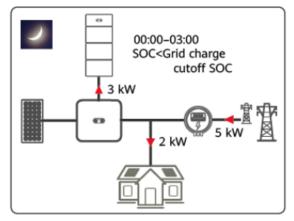
Smart Switch

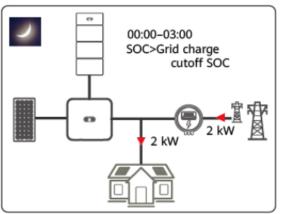
Smart socket - Shelly Plus Plug S Smart relay - Shelly Plus 2PM Smart circuit breaker -Shelly Pro 2PM up to twenty devices

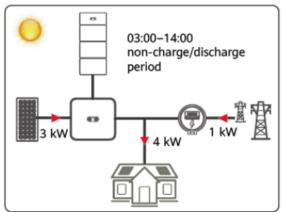
SG Ready heat pump

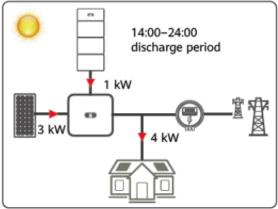
Only one smart grid ready device is supported

Load control functions available with EMMA



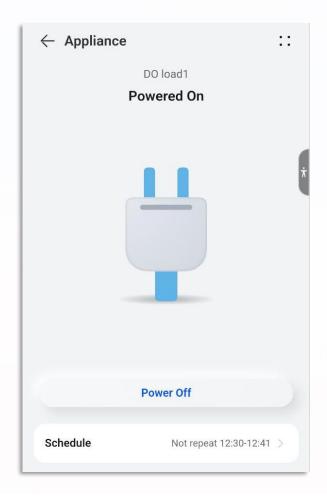





Available working mode for ESS Peak Shaving

The peak shaving function allows you to lower the peak power drawn from grid in Maximum self-consumption or TOU mode during peak hours, reducing electricity fees.

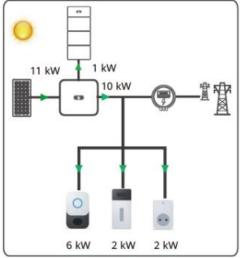
Reed more: Introduction Peak Shaving

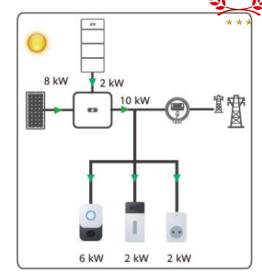


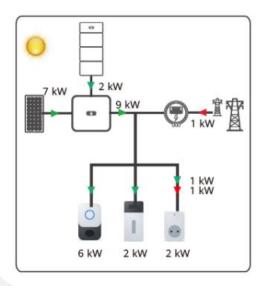
EMMA feature with smart home appliances

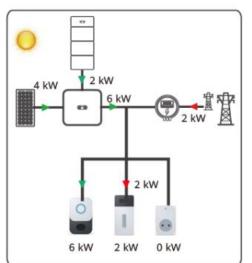
Remote control

Remote switching on and off of devices through the FusionSolarAPP application

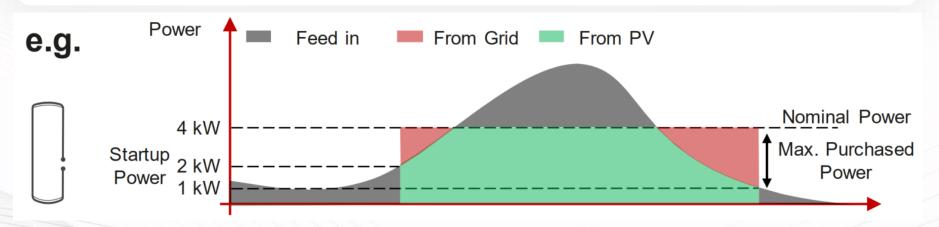

EMMA feature with smart home appliances


PV Power Preferred (EMMA)


Assume that your home has installed PV and ESS devices.


In a season with sufficient sunlight, there is still surplus PV power in addition to power supplied to loads without smart switches.

Then, you connect the smart appliances including the charger, heat pump, and boiler, pool heater/filter, irrigation pump (controlled by smart sockets) to the SmartPVMS to consume surplus PV power and save home energy expenses.



To achieve higher self-consumption ratio, controllable appliances can be set to start working only when there is enough excess PV power.

Parameters:

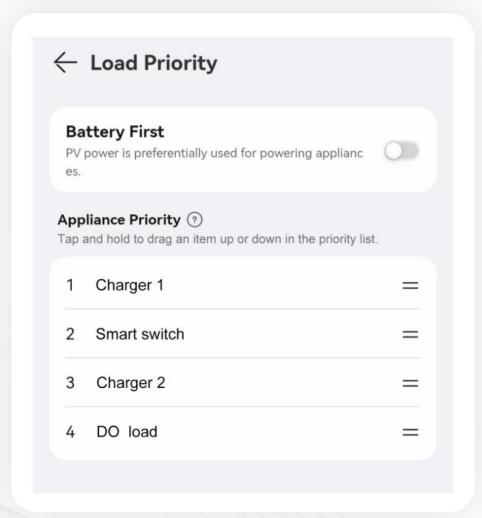
- Startup power (set separately for each device)
- Max. purchased power (≥ 0 kW; applied to all devices in the system)
 Let's set the startup power to be 2kW for a heat pump and the max. purchased power to be 3kW for an example:
- It starts working when surplus PV power reaches 2kW;
- Due to usable PV power being lower than nominal power of heat pump (i.e. 4kW), it also uses power from grid.
- When power consumption from grid reaches 3kW, it stops working.

EMMA feature with smart home appliances Setting the work schedule

- Settings			← Power Consumption Schedule ←)	× Edit	Schedul	е		~
Device Icon	₩ >		4		Sta		_		ind
Device Name	>				Sta	rt	-	٠	:na
Device Type	Common Load				11	29			
Rated Power	0.500 kW				12	30		12	30
Load Priority	>	II)		II	13	31		13	31
Power Consumption Sche									
PV Power Settings) >				Estima	ited power cor	nsumption ti	me:0hours0n	ninutes
Off-grid Load Control	>				Repeat			Not	repeat >
Communication Settings	>		No data available.		PV Powe	r Preferred	d Ø		

We can schedule to start or shut down smart appliances at the specified time.

If the PV Power Preferred mode is enabled but the PV power is less than the surplus PV power threshold for power-on when the scheduled time arrives, the load is not started temporarily.



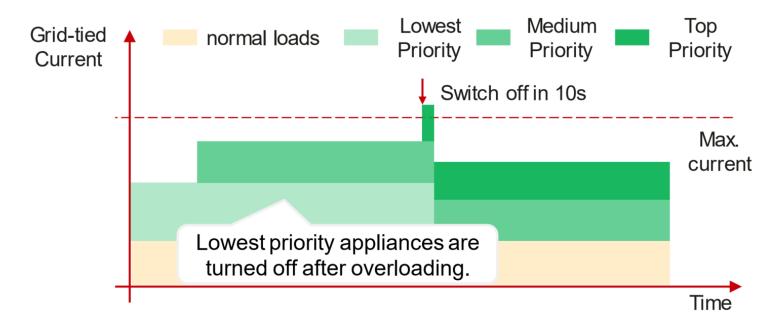
EMMA feature with smart home appliances

Starting Loads by Priority

When the surplus PV power is greater than the surplus PV power threshold for power-on, the load at the highest priority is started first. Then, if the surplus PV power is sufficient for more loads, the loads are started by priority in descending order.

Shutting Down Loads by Priority

When the surplus PV power or grid power is insufficient to support all loads, the loads are shut down by priority in ascending order.



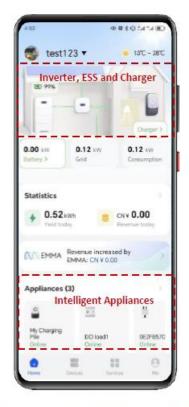
EMMA feature with smart home appliances Load Balancing

EMMA continuously monitors the current at grid-tied point; so when the total current is over the max. current limit, the system will automatically turn some controllable appliance off, in the order of power consumption priority.

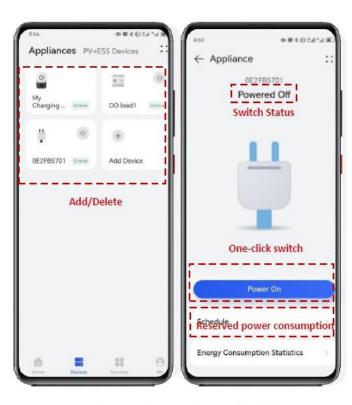
After a device is turned off, it can be restarted in the following conditions:

- It works in PV Preferred mode and the surplus power reaches the startup power;
- Restart it manually via App or web.

Huawei EMMA Solution Competitive Specifications



User Benefits	Solution Features	Dongle Solution (Continued commercial use)	EMMA Solution (Concurrent promotion)		
	Appliance access and control (via Shelly sockets)	×	√ (Shelly ≤ 20)		
	Heat pump access and control	×	√ (SG Ready standard)		
	Priority sorting for power usage	×	√		
Smart Appliances	Peak Shaving	√ (Single inverter)	√ (≤ 3 inverters)		
	PV Preferred	√	√		
	Three phase unbalance control	√ (Single inverter)	√ (≤ 3 inverters)		
	Number of chargers	1	1 or 2		
	Charging permission sharing	×	√		
	Next Trip Reservation Charging	×	√		
	Scheduled Charging	√	√		
Smart charging	Inter-pile power control	×	√		
	Single-phase and three-phase switching	√	√		
	OTA upgrade	√ (Managing Chargers and PV devices with separate management systems results in low O&M efficiency.)	√		
	Manual start and stop	×	√ (via DO)		
Manage the diesel generator	D.G. output power limit	×	√ (via DO)		
(D.G.)	D.G. fault detection (alarm reporting)	×	√ (via DO)		
	Automatic start and stop	×	√ (via DO)		
Consent and a deallers	Smart scheduling	×	√		
Smart scheduling	Load Shedding (for South Africa)	×	√		


One-stop management of Inverter, ESS, Optimizer, Charger, Appliances

One-stop management

- PV, ESS, Charger and Appliances displayed on one screen
- Supports dual-stitch access management.

Intelligent switch/support reservation

- Smart switch, one-click switch
- Power consumption reservation is supported.

Power consumption statistics

- Real-time display of power consumption
- Daily, monthly, and annual power consumption data

Increased Benefits of EMMA Smart Scheduling in Various Scenarios

No revenue increase	Revenue increased
---------------------	-------------------

Electricity							
Electricity price	PV Only PV+ ESS		PV + ESS + Charger	PV+ ESS + Charger + Smart Appliances	PV+ ESS + Charger + Smart Appliances + Heat Pump	Revenue increase rate	
Fixed price		\bigcirc				N/A	
Time-of-use price						Average increase of 6%	
Dynamic price (including negative price)						Average increase of 5%~10%	

Note: Smart scheduling is supported only with the EMMA controller or within a SmartGuard network. This function is not supported in Dongle networking scenarios.

New Whole Home Backup SMARTGUARD-63A-T0

Whole Home Backup 3 phase system

Whole home power backup 3 phase

Easy to install, without circuit modification

Very Soon

Smartguard-63A-T0

- · Compatible with M1 and MB0: 1/3 rated power in off-grid
- Compatible with MAP0: 100% rated power in off-grid mode and support unbalanced load, max 3 inverters
- Support 63A current from the grid
- Support control of DG
- Support seamless switchover, heat pump, and shelly devices
- · Integrate EMMA-A2 and circuit-breaker

Seamless

< 20 ms

Ultra-fast switchover to power backup mode

Reliable

Bypass Mode

When a fault occurs

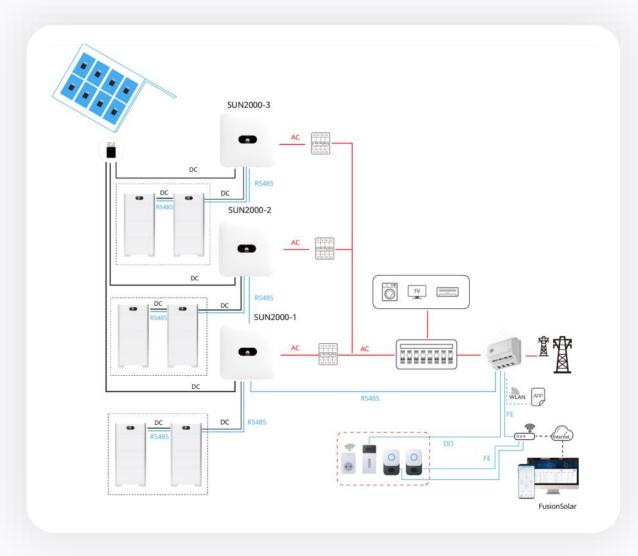
Manual bypass is supported

Powerful Backup Capacity

Higher power inverter and more energy ESS

Hierarchical shutdown for longer backup time

On-grid Off-grid



Three-Phase PV+ESS Scenario + EMMA Networking

Product Overview

Components:

Inverter (supports up to three devices):

- SUN2000-(12KTL-25KTL)-MB0
- SUN2000-(3KTL-12KTL)-M1
- SUN2000-(8KTL-20KTL)-M2
- SUN2000-(12KL-25KL)-M5

Energy storage system (ESS)

- LUNA2000-(5-30)-S0
- LUNA2000-7/14/21-S1 (in near future)

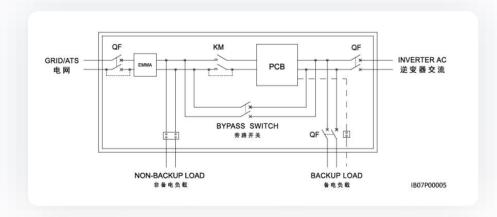
EMMA

- EMMA-A01:Only PV and ESS features are supported
- EMMA-A02: Features of PV, ESSs, smart chargers, and smart loads are supported.

Smart PV Optimizer

- SUN2000-450W-P
- SUN2000-450W-P2
- SUN2000-600W-P

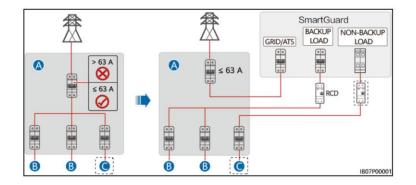
Smart Charger

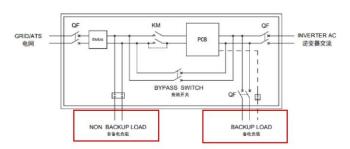

Smart Appliance Networking - More details on a separate slide

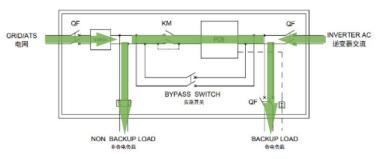
SmartGuard-63A-S0 What's inside?

SmartGuard is like a backup box, but better!

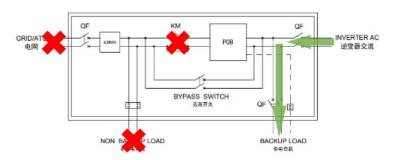
- EMMA
- Bypass switch
- Inverter AC input terminals 1&2 (AC switch)
- Backup and non backup load terminals
- Power control board




SmartGuard: Capacity and Working Modes



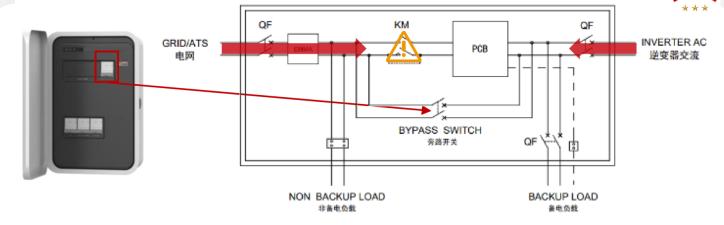
ONLY when the current capacity of the main circuit breaker is less than 63A, the SmartGuard can be used.



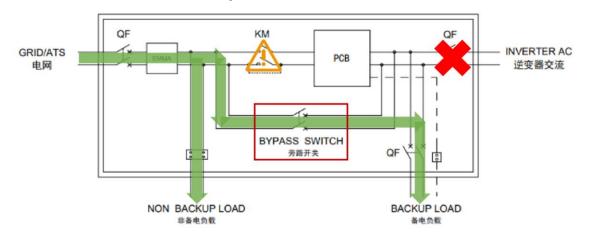
When we calculate the backup capacity, always consider the output current limit of the inverter. To avoid overloading and tripping during backup mode, it is ideal to divide the loads into backup loads and non-backup loads and to connect them to respective portal.

When the system is on-grid, KM will be closed, and the grid and PV system supply power to both backup loads and non-backup loads.

When it is off-grid, KM will be disconnected. For now, only the PV&ESS system supplies power to the backup loads and non-backup loads cannot work any more.


EMMA future with SmartGuard

Bypass Mode


If a SmartGuard becomes faulty, even though the grid and PV & ESS system are still good, all home appliances will be out of power.

Under this circumstance, a bypass switch inside of SmartGuard can be used to enable the grid power to both backup and non-backup loads.

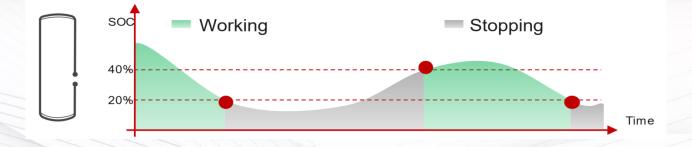
Firstly, disconnect the PV & ESS system side circuit breaker; and then turn on the bypass switch. During bypass mode, PV &ESS system cannot work and the PV &ESS system side circuit breaker must be open circuit.

Bypass Mode

Load control functions available with SmartGuard

Off-grid load control

Smart home appliances can select any 1 out of 3 working modes during backup mode:


- Mode 1: Top priority load Remain powered all the time
- Mode 2: Lowest priority load Not working at all
- Mode 3: Automatically turn on/off according to SOC pre-settings

To extend the backup time of more critical loads, we can put some devices, which are less important, to Mode 2 or 3.

Example for Mode 3:

Let's set 20% SOC as shutdown trigger and 40% SOC as turn-on trigger for a heat pump working on Mode 3.

- With enough SOC, the heat pump worked on backup mode.
- When SOC goes down and reaches 20%, the heat pump went off.
- After a while, the ESS got charged to 40% SOC, and then the heat pump resumed working again.

Commercial & Industry Product solutions & road map

Smart PVMS

Optimizer

MERC-1100/1300W-P

Available

Inverter

SUN2000-100/115KTL-M2
- Already registered in Rikta Rätt

Ready to order now

Smart string ESS

LUNA2000-200KWH-2H1

Available

LUNA2000-161/129KWH-2H1 LUNA2000-97KWH-1H1

Ready to order now

Power Unit

Liquid cooled Power Unit

Roadmap to be defined

Management System Tools

Smart Dongle + Smart PVMS

Available

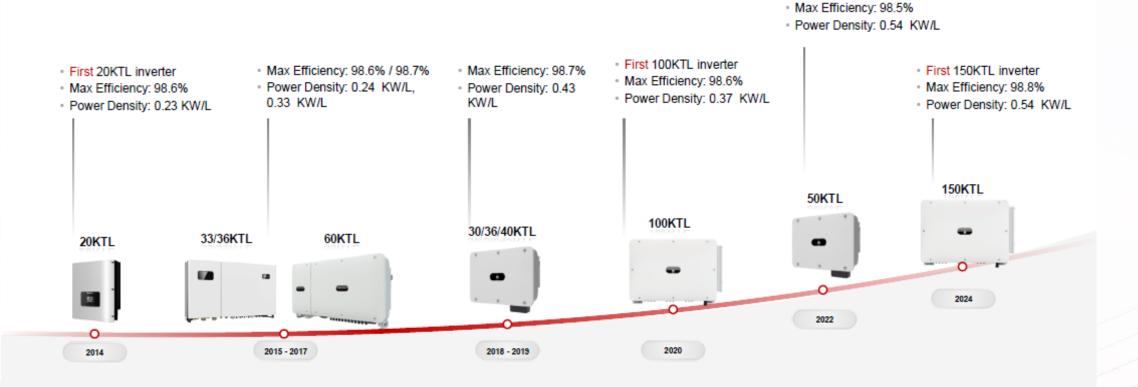
Optimal Electricity Cost

Smart Energy Consumption

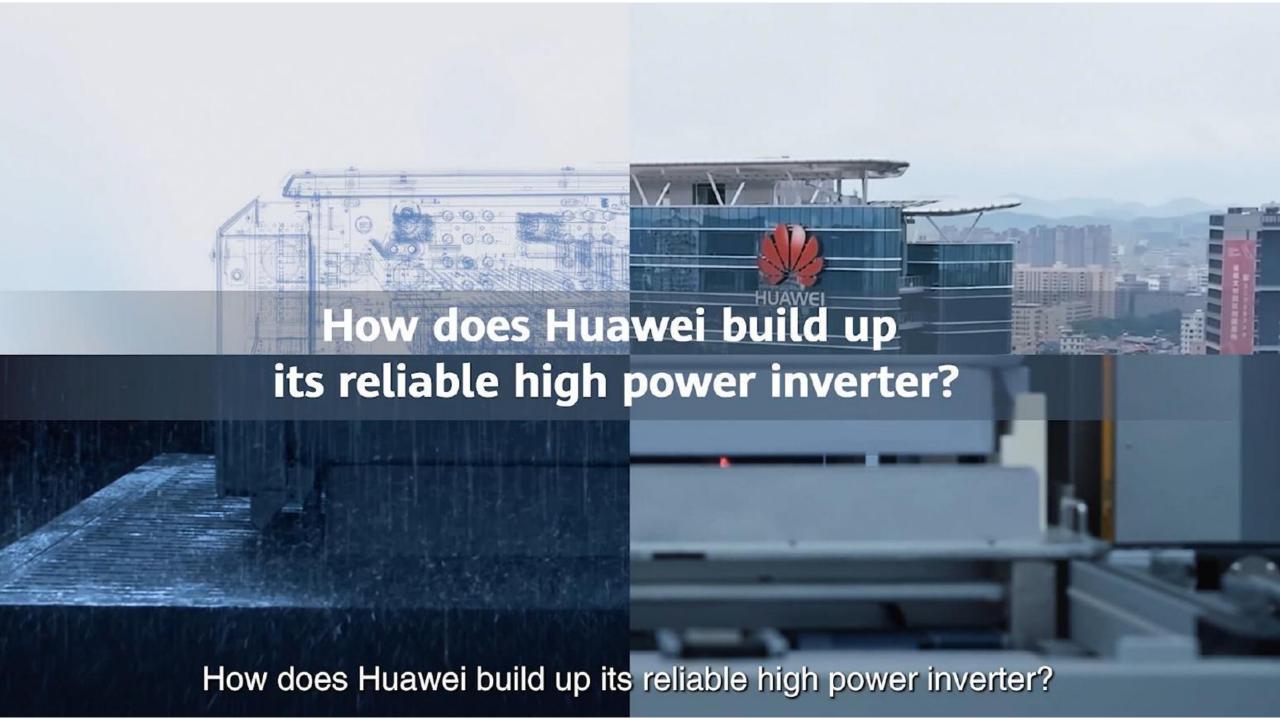
High Reliability

Smart O&M

Active Safety

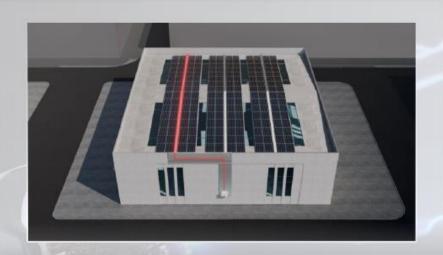


Leading the way in Power Electronics Innovation throughout the decades



More Safe and Reliable PV Solution

C&I All-Rounder


Leading AFCI Solution, Larger Detection Range, Ensuring Asset Safety

Industry Leading

200m Detection Range Only fit Small/Middle Scale Rooftop

Unable to Detect Longer range Arc fault

450m Can Cover Larger Scale of C&I Application

Especially for MW rooftop

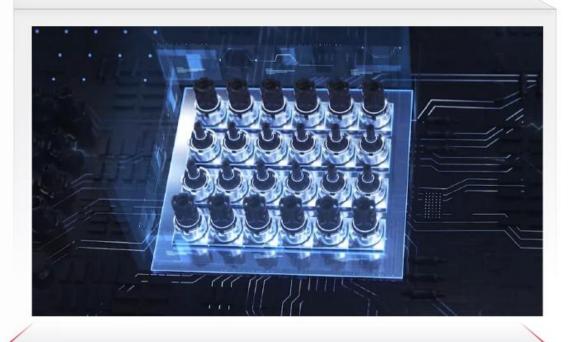
200m 450m

Smart Connector Temperature Detection, Real-time Detection of Connector Temperature, Improving DC Connector Reliability

DC & AC Side

Over Temperature May Cause Fires

Metal core improperly crimped


Connectors loosen or not qualified installation

Poor contact by external forces

Accurate Over Temperature Detection

Both DC connector and temperature sensor onboard **0.5s** Shutdown when Over temperature Happens

Industry's first PV Ground-Fault Protection, cutting off ground faults within 15 ms during grid connection, ensuring inverter safety

Industry First

PV Ground-Fault Caused Highest Failures

Cables not firm connected

Long-term stress cause by disordered cabling

75%

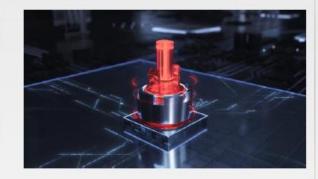
PV Ground Fault @ PV Side Problem

Inverter damage

Fire risk

Rapid Shutdown and Protect Inverters Effectively

Value 2: System-Level Safety Solution, Ensuring Device and Asset Safety


Device Safety
PV Ground-Fault Protection

Device Safety Smart Connector Temperature Detection

Asset Safety
Active arc extinguishing for fire prevention

Device Safety
Active disconnection for device protection

Industry's First

cutting off ground faults within 15 ms during grid connection, ensuring inverter safety DC & AC Side

Real-time Detection of Connector Temperature

Industry Highest L4 AFCI

Arc protection covering the entire roof

Active arc extinguishing for

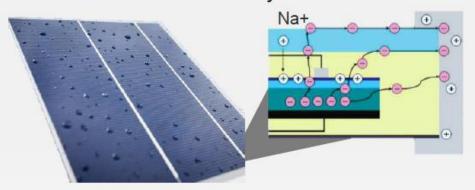
Active arc extinguishing fo fire prevention Industry-unique Smart

String-Level Disconnect

Intelligent and fast

disconnection

Ensure the safety of the


DC side

Industry-leading PID repair improves the energy yield by 3%.

Industry Leading

Industry: PID is one of the most frequent problems in PV systems

PID reduces the energy yield by more than 5% throughout the lifecycle.

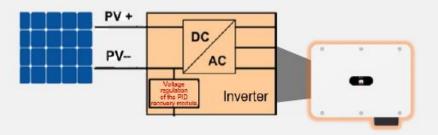
The modules work at a high voltage for a long time, and leakage current exists between the cover glass, packaging material, and frame.

The direct harm of PID is that a large number of electric charges accumulate on the surface of the cell, which downgrades the passivation effect on the surface, causing power attenuation.

PID is more severe in high-temperature and high-humidity areas.

PID is most likely to occur in high-temperature and high-humidity environments, or on modules with damaged packaging.

The severity is related to the humidity.


High temperature

High humidity

Damaged module

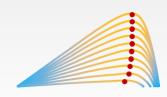
Huawei PID repair solution effectively avoids the PID effect and ensures energy yield.

Built-in PID repair function of Huawei inverters

A rooftop project in Zhongshan City, Guangdong Province TÜV's empirical tests prove that Huawei's PID repair function can improve energy yield by 3%.

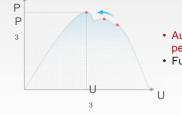
98.8% Efficiency + Intelligent MPPT Tracking Algorithm, Improving Yield by 1.5%

98.8% efficiency


Focus on the three core elements of inverter efficiency Improve inverter efficiency with three steps

- Three steps: Simulation in the early stage, test and verification, and long-term optimization
- 0.2% higher efficiency than industry average

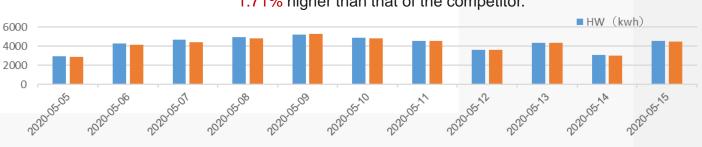
High dynamic MPPT efficiency


With Huawei's intelligent algorithm, the MPPT tracking efficiency reaches 99.839%.

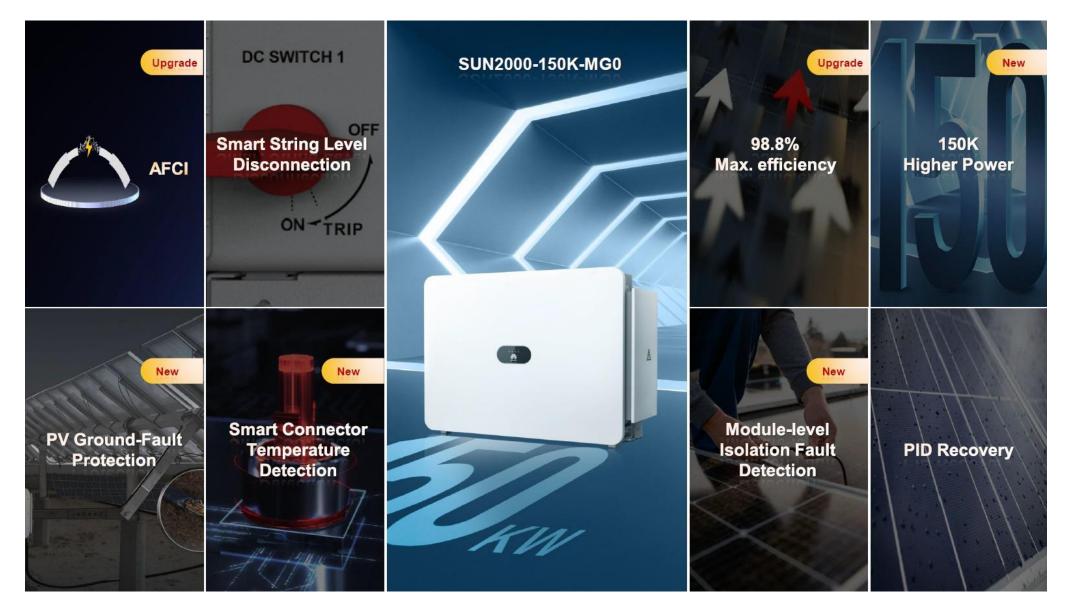
- Dynamic MPPT efficiency:
 99.839%
- Faster tracking of MPP when irradiance changes

MPPT multi-peak scanning

Conventional algorithms cannot accurately track the maximum power point. Huawei multi-peak MPPT scanning accurately locates the maximum power point.



- Automatic identification of multiple peaks
- Full-range MPP scanning < 200ms


Rooftop PV Plant of a factory in Vietnam: Huawei's 100 kVA inverters outperform those of the competitor by 1.71%.

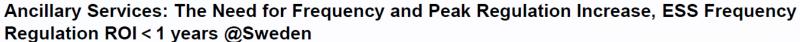
INTEGRATING ALL YOU NEED

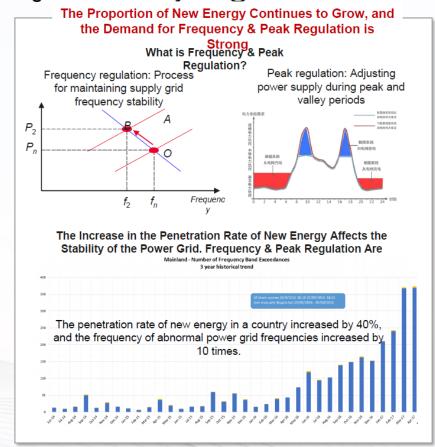
6 core values for higher ROI

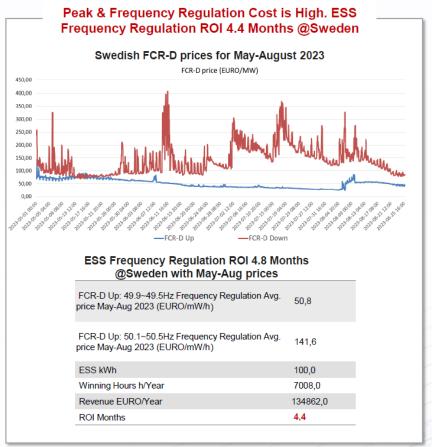
- Higher Yield

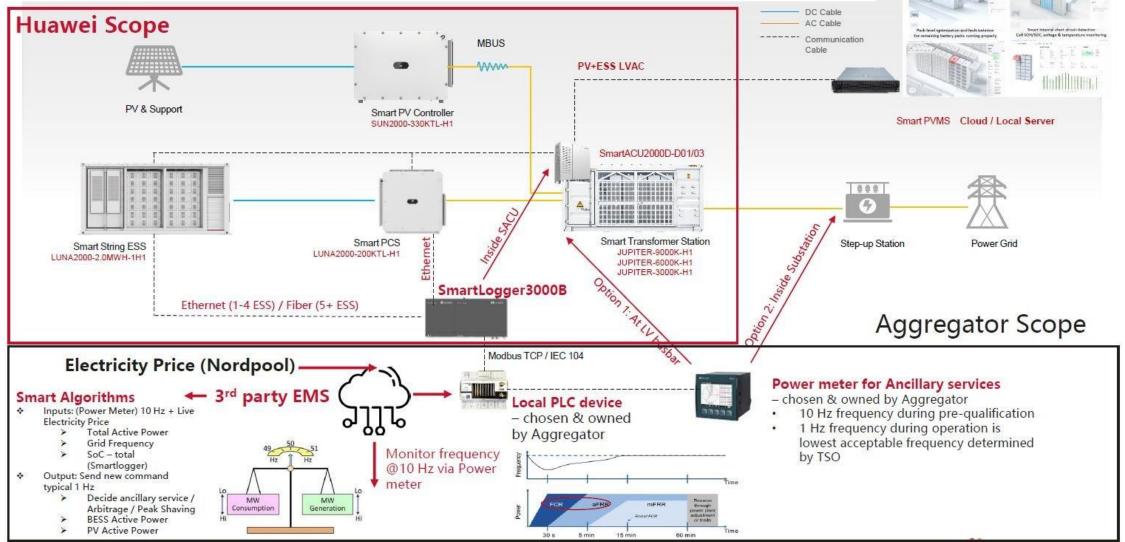
- Simplified O&M Better BOS
- Grid-Friendly

Commercial & Industry Energy Storage Systems - BESS


Energy Market & Ancillary Services

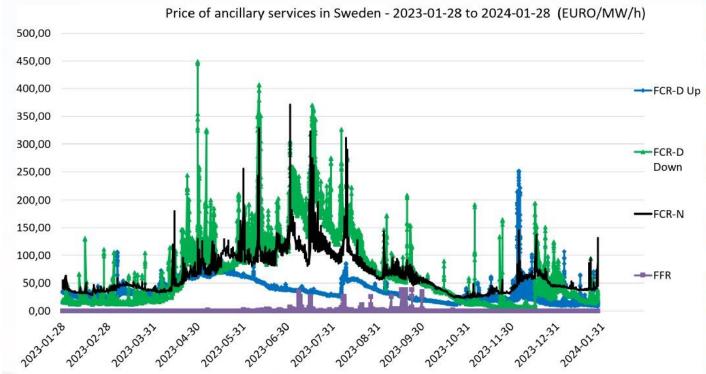






Huawei Hybrid PV+BESS for Ancillary

Services, Peak Shaving, Arbitrage



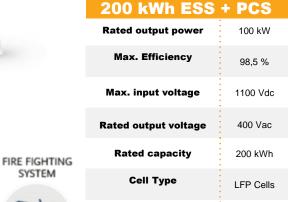
Ancillary Services: The Need for Frequency and Peak Regulation Increase, ESS Frequency Regulation ROI < 1 years @Sweden

FCR-D Up + FCR-D Down: 1.35 years ROI

FCR-N (60% of max Power) + FCR-D Up + FCR-D Down: 0.98 years ROI FFR + FCR-N (60% of max Power) + FCR-D Up + FCR-D Down: 0.92 years ROI

Economical ROI's calculated for Huawei C&I ESS

FCR-N (€/MW/h)	65,39	Average price	
FCR-D Up (€/mW/h)	36,33	Average price	
FCR-D Down (€/MW/h)	69,26	Average price	
ESS kW (97 kWh)	92,00	The total qualified power for this 97 kWh ESS - limited by batterypack total discharge power	
Winning Hours h/Year (80%)	7008,00	Assume win 80% of all hours for this year	
Revenue EURO/Year - 1x ESS 97 kWh, 100 kW - FCR-D UP (100% Power)+ FCR-D Down (100% Power) + FCR-N (60% Power)	93373,42	Revenue including FCR-N	
Revenue EURO/Year - 1x ESS 97 kWh, 100 kW - FCR-D UP (100% Power)+ FCR-D Down (100% Power) + FCR-N (60% Power)	68079,08	Revenue without FCR-N	
Fee to aggregator	40,0%	Aggregator needs to also pay Balance Responsible Party (BRP) and Grid Company (Vattenfal, EON, Ellevio, Tekniska Verken, Göteborgs Energi, SK,	
ROI (Years) - 1x ESS 97 kWh, 100 kW - FCR-D UP (100% Power) + FCR-D Down (100% power) + FCR-N (60% Power)	0,98	Very capable aggregator: can also includ FCR-N	
ROI (Years) - 1x ESS 97 kWh, 100 kW - FCR-D UP + FCR-D Down	1,35	Average aggregator: only manages FCR-D Up + FCR-D Down	
Number of hours per year with FFR durin	759,00	During 2023: FFR only needed 8.7% of all the hours of the year!	
FFR during 2023 (SEK/MW/h)	56,83	Average price	
Average price FFR during 2023 (EURO/MW/h), 1 year average EUR/SEK = 0,087	4,94		
Revenue EURO/Year - 1x ESS 97 kWh, 100 kW - FFR	3752,93	-	
ROI (Years) - 1x ESS 97 kWh, 100 kW - FCR-D UP (100% Power) + FCR-D Down (100% power) + FCR-N (60% Power) + FFR (100% Power)	0,92	FFR is not so profitable in 2023, maybe in 2024 it will be better? Seems SVK was just testing it in 2023. Only active during summer and not at the max volume so often.	


HUAWEI SMART BATTERY STORAGE:

OPTIMAL LCOS, ACTIVE SAFETY

RACK

COOLING SYSTEM

SYSTEM

Container

2 MWh ESS + PCS

Rated output power 200 kW Max. Efficiency 99 % Max. input voltage 1500 Vdc Rated output voltage 800 Vac

Rated capacity

Cell Type LFP Cells

Container **Protection level**

20 feet

IP55

2064 MWh

MODULE

OPTIMAL CONFIGURATION

EXTENDED SERVICE LIFE

EASY MAINTENANCE

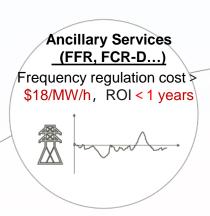
SECURITY & RELIABILITY

LCOS battery reduction the standard solution

battery life

OPEX annual savings ~ € 725 / MWh

Reliability - 99.9% Fire hazard prediction



2.5 x 2 x 1 m

Five Business Models of ESS to Support Value Implementation in Business

Demand Management Demand cost > \$130/kw/year, ROI < 8 years Power Before After

E.g. Nodes for EV charging

Avoid grid reconstruction

The grid capacity is insufficient.

Grid reconstruction - Cost

€74k/ Duration 6 months

Maximum Self-

Consumption

Luna2000-97-200kWh-1H/2H

ESS model	ESS capacity (1 cabinet)	Quantity of battery pack	Max. charge/discharge rate	Parallel use
LUNA2000-97KWH-1H1	96.8kWh	6	1C	 Different capacity models can be used together (Max. 20) Capacity range: 96.8~3870 KWh
LUNA2000-129KWH-2H1	129.0kWh	8	0.8C	
LUNA2000-161KWH-2H1	161.3kWh	10	0.64C	
LUNA2000-200KWH-2H1	193.5kWh	12	0.5C	

Challenges and complexity

Challenges in Battery Energy Storage System Industry

Low Available Capacity

 Series & Parallel mismatch due to inconsistency between battery cells, which leads to lower available capacity according to Cannikin Law

Pack & Rack Optimizer

Complex O&M

- On-site battery installation wiring & commissioning
- Regular SOC calibration by professional staff

No need for periodic balancing No need for experts to visit sites

Short Lifespan

 Unbalanced temperature control design, resulting in a temperature difference of >10°C inside the container and a 25% reduction in battery lifespan

Distributed Temperature Control

Fire Risks

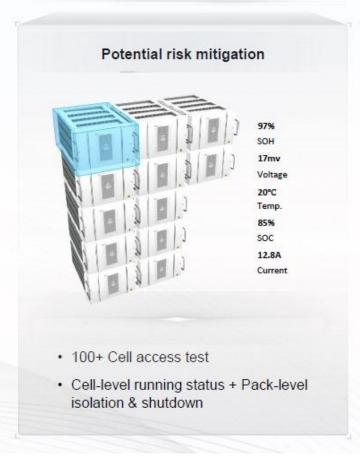
- Battery cell over-charge, overdischarge ,or other faults
- Key components(circuit boards, contactors, etc.) failure cause sparking and arcing

Cell to system safety protection Avoid thermal runaway

Key Value1: Active Safety

In the face of endless safety problems
3-protection measures to ensure system safety

- Device safety
- Property safety
- Personal safety

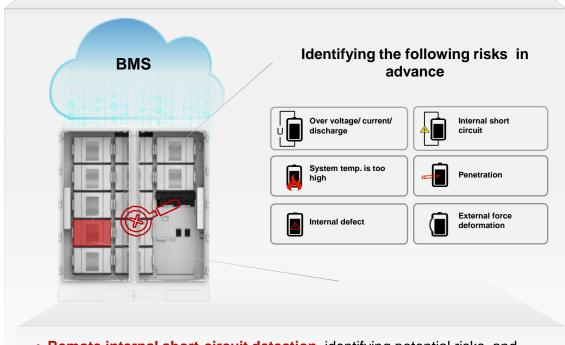


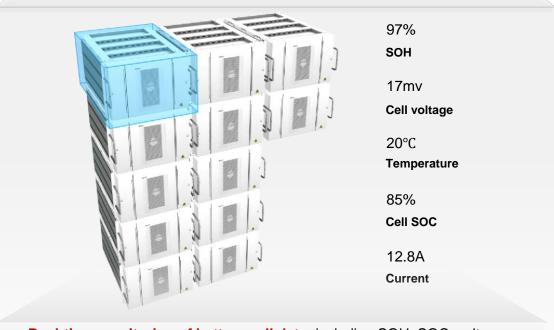
3-Dimensional Active Safety Design for Device, Asset & Personal

Device Safety Design

Asset Safety Design

Personal Safety Design




BMS & cell-level monitoring, proactively identifying and alerting risks

Huawei: CBMS, high precision internal short-circuit detection algorithm

Huawei: Cell-level monitoring, real-time visual & manageable battery cell data

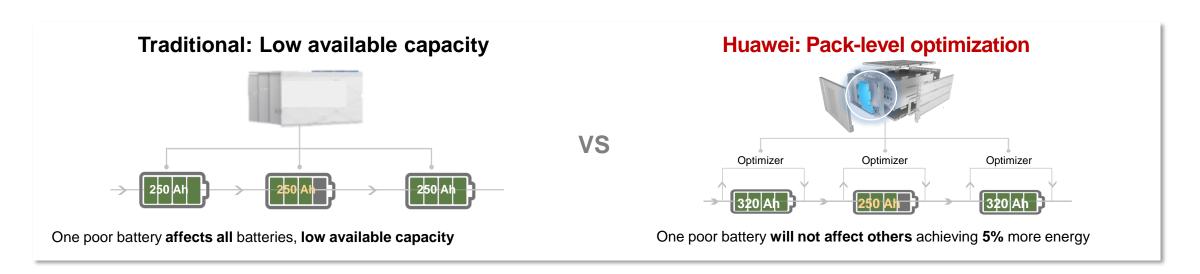
 Remote internal short-circuit detection, identifying potential risks, and providing a warning for thermal runaway

- Real-time monitoring of battery cell data, including SOH, SOC, voltage, current, number of cycles
- Cell data is visible and manageable on the SmartPVMS

Asset Safety

Optimizer + rack controller & active fire suppression module, quickly extinguishing fires

Multi protection


Rack controller **Optimizer Active fire** suppression module Huawei: Multiple interlocks, active disconnection & fast isolation, quickly suppress the danger

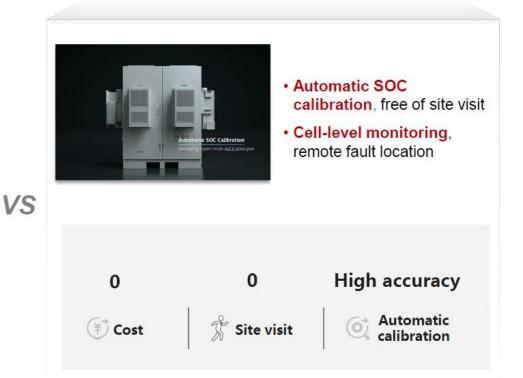
- Optimizer actively bypasses faulty battery packs
- Rack controller provides overcurrent/ short circuit protection
- Active fire suppression module automatically senses in extreme situations and extinguishes fire quickly within 10s

More energy, pack-level optimization to achieve 5% more usable energy

8% more power by profitable ESS Solution @China

- TOU business mode
- Discharge mode: 2 times/day

Automatic SOC Calibration, No Need for On-site SOC Calibration



- On-site SOC calibration
- Battery data is invisible.
 Fault location requires onsite visit

* On-site SOC calibration: \$420/time

Huawei: Automatic SOC calibration

Smart String ESS

Beyond Modular Design

C&I Project Already Deployed Sweden 2024

photomate.eu

HUAWEI FUSIONSOLAR PARTNER for CEE, Scandinavia, Baltics and Eurasia

What technical service does Photomate provide for the battery energy storage projects?

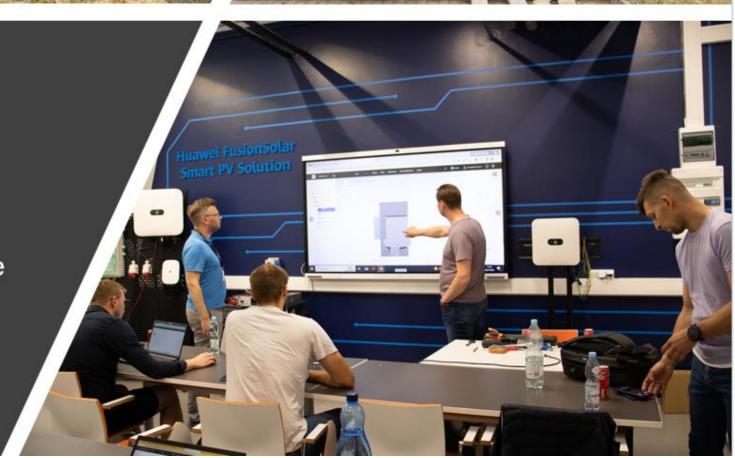
Technical Support and Consultation

Installation and Commissioning

Monitoring and Maintenance

Performance Optimization

Basic supervision service from Photomate


Before commissioning	All necessary support and technical consultations about: -installation site, EPC work; -electrical and communication line design; -compatibility of the products & 3rd party devices -necessary 3rd party products (if needed); -obligatory permissions and agreements (local).		
Duration	6 hours		
On-site commissioning	-verification of components assembly; -basic electrical safety measurements*; -powering on system; -Smartlogger/SACU commissioning; -firmware upgrades; -connection to with FusionSolar PVMS -testing working modes and features; -defect elimination (if needed)**; -basic how to use training (2hours);		
Duration	1 day		
After commissioning	-standard (real) remote technical support 8x5; -12 online inspections every 6 months from installation with provided report* *FusionSolar Cloud connection needed		
Duration	6 hours		

A dedicated professional team is indispensable for making the product of ultimate value for it`s users – let's join the journey for the Green Energy Transition together!

Vilka Produkter vill ni se i snara framtiden?

Visit our Roadshow truck outside!

Example 1 Knowledge Data Center

- Visit us on: photomate.zendesk.com
- Visit our website: photomate.eu
- Call our Hotline:08-5028234507.00-16.00Monday-Friday

Thank you!

SALES OFFICES EUROPE AND ASIA

- ▶ Prague ▶ Czechia and Slovakia
- ▶ Kyiv, Lviv ▶ Ukraine
- ▶ Warsaw ▶ Poland

- Sønderborg ► Denmark
- Stockholm ► Sweden
- ▶ Tallinn ▶ Baltics

- ▶ Plovdiv ▶ Bulgaria
- ▶ Tashkent
 ▶ Uzbekistan

